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Abstract

In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector
measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in
the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in
finding the best estimate of the transformation between these coordinate systems. The algorithm called
QUEST yields that estimate where attitude is expressed by a quaternion. QUEST is an efficient algorithm
which provides a least squares fit of the quaternion of rotation to the vector measurements. QUEST,
however, is a single time point (single frame) batch algorithm, thus measurements that were taken at
previous time points are discarded.

The algorithm presented in this work provides a recursive routine which considers all past
measurements. The algorithm is based on the fact that the, so called, K matrix, one of whose
eigenvectors is the sought quaternion, is linearly related to the measured pairs, and on the ability to
propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST
algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard
eigenvalue-eigenvector solver algorithm is used. The development of the recursive algorithm is
presented and illustrated via a numerical example.

L. INTRODUCTION

The problem of finding attitude from vector observations is stated as follows. A sequence, bi, i=1,2,

., k of unit vectors is given. These unit vectors are the result of measurements performed in
vehicle cartesian coordinates, of the directions to known objects. The sequence, T i=1,2, .. , k of

unit vectors, is the sequence of the corresponding unit vectors, resolved in a reference cartesian
coordinate system. We wish to find the attitude matrix, A, which transforms vectors from Ehc reference
to the body coordinates. Obviously, A has to be an orthogonal matrix. In 1965, Wahba posed this
problem as a least squares problem as follows. Let

k
1 2
L(A) = 3 i}=.‘.l|bi- Aril ¢y
find that orthogonal 3x3 matrix, A, that minimizes L. We can weigh each measurement separately

according to the accuracy of the particular vector measurement. In addition, we may want to find the
quaternion, rather than the matrix, representation of attitude. In such case (1) is replaced by
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J@ =5 Za|b-AQr | )]
where a, i=1.2, .. , k are the positive weights assigned to each measurement. In (2) we are looking
1
for that quaternion, q, which minimizes J. Note that instead of minimizing J, we can maximize g defined
as
g@ =1-J4q) (3)
It can be shownz'3 that g(q) can be written as
T
g@=q Kgq @
where K is constructed as follows. Define
k
mk = i§1al Ga)
k
o=1 zap'r (5.b)
m i=1iii
k
k
B=X Xabr )
m i=liii
k
T
S=B+B (5.4)
{ k
z=-— Xa( xr) (5.e)
m i=1i 1
k
Then
S-ol} z
K= =|— (6)
z o

where I is the third order identity matrix. It was shownz'3 that q*, of unity length, which maximizes

g(q) in (4), satisfies the equation

th=xqt

0)]

where A is a, yet undetermined, Lagrange multiplier. We realize that A is an eigenvalue of K and q* is
the eigenvector which corresponds to A. Substitution of this solution into (4) yields

g(q*) = A ®)

and since we wish to maximize g, we choose A.w, the largest eigenvalue of K, as the desired
cigenvalue, and then, q* is the eigenvector which corresponds to this l.m. Davenporl:2 showed that once
lm is found, there is no need to solve for the eigenvector of K, since y*, the optimal vector of

Rodrigues paramctcrs‘. (also known as Gibbs vectors) can be computed as follows
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and the optimal quaternion can be found using the known relation

1 y*
qQ* = (10)
'J 1+ ly*l2 1
Shuster®"” showed how to, easily, compute A.m“ to arbitrary accuracy, and how to deal with a singular

matrix in (9). It was also shown there that lmx is close to 1 and is exactly 1 when the measurements
are error-free. (This property is due to the fact that all ai’s in (2) add up to 1, or, equivalently,
the introduction of the normalizing factor mk in to (5.b, ¢, and e)). The algorithm for obtaining lmax
and q* from vector observations discussed above is known as the QUEST algorithm.

QUEST is a single point attitude determination algorithm; that is, it utilizes the vector measurements
obtained at a single time point and uses them, and them only, to determine the attitude at that time
point. This way, the ipformation contained in past measurements, is lost. This fact has been recognized
and in 1989, Shuster’ presented an algorithm which he named Filter QUEST that processes vector
measurements recursively. The Attitude Profile Matrix, B, defined in (5.c), which plays a central role
in the algorithm, is updated recursively for use in the QUEST algorithm. Much attention is given, in
that paper, to covariance calculations.

In the present work, the matrix, which is updated recursively, is the K matrix defined in (5) and (6).
Indeed, as can be seen in the algorithm described above, K is the most important element in QUEST. In
the following section, we start our presentation of REQUEST by considering, first, the recursive
time-invariant algorithm. Then, in Section III, we develop the recursive algorithm for the time-varying
case and present an example. In Section IV we list the algorithm in a unified form. Finally, in Section
V, we present our conclusions and recommendation for further work.

. THE RECURSIVE TIME-INVARIANT ALGORITHM

Assume that the body axes are non-rotating with respect to the reference axes. Also assume that k
vectors have been processed using the QUEST algorithm.
Let
k
m = iElai (11.a)

where m is not necessarily equal to 1. Also define

X
1 T
= m iglaibiri (11.b)
X
k
1 T
B, = E; Eabr. (11e)
S =B +B 11d
kX k (11.4)
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"

The parameters O, Sk and z , are then used to compute K, which for the case of k measurements, is

denoted by Kk. The latter is 1:xsv:d to find the optimal quaternion, based on k pairs of measured vectors.
(Note that QUEST doesn't require the computation of Kk itself). As mentioned earlier, the coefficient
m is used in (11.b, c, and e) to normalize the weights, a, such that kmu is closed to 1. (See Ref. §
for the solution of Xm“). Now suppose that an additional measurement has been acquired; that is, the
k+1st pair has to be processed. The question is then, do we have to re-compute the Kk+1 matrix anew or
can we, perhaps, update Kk 1o included the added pair. As will be shown next, the latter is possible.
In fact','it forms the basis for the REQUEST algorittm. We formulate this quality of K in the following
proposition.

Proposition 1: Let

T
kel 2 P (12.2)
5B, =a b r (12b)
k+1 k+1 k+l k+l
8S. =8B, _+ 8B! (12.c)
k+1 k+1 k+l .
8z, = 8 0 X T (12.d)
Sskﬂ- sok lI szkﬂ
8K == (12.¢)
k+1 SzT o
k+1 k+1
then
m, 1
Xt = K+ 8K, 1 (13)
k+1 k+1
Proof: By definition
k+1
R L) (14.2)
Now, it can be easily verifies that
k+1 k
A 1 T _ 1 T 1 T
O = m i EN T BN m .t (14.b)
k+l k+l k+1
k+1 k
A 1 T_ 1 T 1 T
Bk“ " m iElaibiri “m iglaibiri + m ak+lbk+lrk+l (14.¢)
k+l k+1 k+1



A T T T -
Sk+1 = Bk+1 + Bk+l = Bk + Bk + SBkﬂ + 6Bk+1 (14.d)
A k+1 k
Tt -m o ®X R T abx r o—a b xr ) (14.¢)
k+l k+1 k+1
Using the definitions in (11) and (12), (14.b) to (14.e) can be written as follows
m
k 1
= g + (153)
k+1 m. ., Kk e
m
k 1
S = S + 58 (15.b)
k+1 mk+1 k mk+l k+1
m
k 1
el T m AT m (15.c)
k+1 k+1

When S Sk”, and Za defined in (15) are used to form Kk“, using the format of (6), (13) results.

This ends the proof.

We have assumed here that we add only one new measurement to the k measurements that were already
processed. This can be extended to the case where two or more measurements are added as a group of
- measurements. Suppose that K was computed n times where at each time, one or more measurements were use
to compute (initially) or to update K. Let this K be dencted by Kn n=1,2, ... , where Kl is computed

using (5) and (6), and where the index k is the number of measurements used to compute Kl. Suppose that

j mew pairs of vectors are measured and we want to use them in the updating of K. We can, of course,
update Kn j times, using the algorithm presented in Proposition I, and obtain the updated K, or we can

lump the new j measurements together, and update K only once. The latter is performed according to the
algorithm listed in the following proposition.

Proposition 2: Let
k+j
dm = Ea d (16.2)

where k is the number of, already processed, pairs of vector measurements,

k+j T
8 1 = iFa 20 (16.b)
k+j T
8B i1 = i 20T, (16.¢)
88n+1 = aBn+l + SB:H (16'd)
k+j
szn~|~l = i=§+1 ai(bix ri) (16.¢)
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n+l n+l n+l

8Kn+1 = T (16'0
5z do
n+l n+l
then
m =m +0m (17.a)
n+l n n+l
and m
- " K 4+ 6K (17.5)
n+l m n m n+l
n+l n+l

This proposition can be easily proven along the lines of the proof of the first proposition. The case
described in the first proposition is a special case of the latter. we chose to split the introduction
of the updating of K into two cases merely for methodical reasons.

II. THE RECURSIVE TIME-VARYING ALGORITHM

The updating algorithm of the static case can now be extended to the case where the body rotates
between measurements. In the ensuing development we distinguish between two cases; namely, the
error-free propagation case, and the propagation which is based on angular rate measurement, and as
such, is contaminated by rate-measurement €ITors.

1.1 Error-Free Propagation

Assume that at time t k pairs were processed, then the body rotated to a new orientation and there,
at time t j new vector measurements were performed. We wish to find the least squares fit of the

quaternion to the first k measurements, at this new time point, and then do the same when the new j
measurements are considered t0o. So first we are interested in finding q;””n which is the quaternion

that expresses best the attitude at time o based on the first k measurements which were performed
previously, at time t. Let us re-write the cost function of (4) for q at time t based on the first k

measurements which, as mentioned, were performed at time t

T
gq J=q K 4, (18)
It is well lmown9 that during the rotation, q changes according to the differential equation
. 1
q = 359 (19)

where Q is a 4x4 skew symmetric matrix whose elements are the body components of the vector of the
angular velocity of the body with respect to the reference frame. The solution of (19) yields

q(tnﬂ) = ¢(tn+l'tn)q(tn) (20)

Ideally, when Q is known perfectly, the matrix ¢(tn+l.tn), known as Transition Matrix, transforms the
quaternion which represent the attitude at time t, 0 that which represents attitude at time t ’ For
n+

simplicity of notations, we denote it, simply, by ®. The quaternion which we wish to transform from

time tn to time tn+1 is q " thus we set q(tn) = qn/n. Finally, we denote the quaternion, to which

q,,, s transformed, by 9/’ thus we set q(tnﬂ) =4 Consequently (18) becomes

Uin =P 4y @1
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Since Q is skew symmetric, ® is orthogonal, thus we can write

-1 T
qn/ll = qn+l/n = qn+1/n (22)

Substitution of qn,n of (22) into (18) yields

)=q.  ®K @ q 23)

n+l/n n/n n+1/mn

gq ) =¢G@q

n+l/n

We realize that the problem of finding 9 that maximizes g has been transformed into the problem of

finding 9t which maximizes g’. Let

=®0K o 24)

n+i/n - n/n

then (23) becomes

q (25)

s T
8@, )=4q 1

n+l/n n+l/n  n+l/n
One may ask oneself whether the problem of finding L I which maximizes g', is still related to
Wahba’s problem; that is, will the maximization of g' yield a quaternion which is a least squares fit
to the k vector measurements. The answer is, of course, positive, since the maximizing L is
directly related, through (22), to 9/ which maximizes (18), and the latter is the solution of Wahba's
problem, given the k measurements. It can be shown (see the Appendix) that, like before, q‘n“/n. which

is the qn+l/n that maximizes g’, given in (25), satisfies the equation

ae1/n Sa61/1 = Mart/n Baerm (26)
and that 9., /n S the eigenvalue of KM”n which corresponds to the largest eigenvalue of Kn+1 /n’ It

is interesting to note that this solution to the constrained optimization problem is not specific to
attitude determination. It stems from the fact that the cost function is defined as a. quadratic form of
a square matrix and that q is required to be of unity length. (See the Appendix). Also note that
although we assume error-free propagation, the measured vectors contain measurement errors. Finally,

note that Kn+1 /' being a result of a similarity transformation on Kn /n’ has the eigenvalues of the

latter even though its eigenvectors are different,

Now that we have established the fact that Kn+l /n is the proper K matrix for finding the least squares

fit of the quaternion at time tn+1 based on all past k measurements, we can include j more measurements

performed at tn+1' For this we use (17.b) of Proposition II. Consequently from (24) and (17.b) we

obtain
T
n+l/n ® Kn/n‘b (27.9)
mn 1
n+l/nel | m Kn+l mtm SKM] (27.b)
n+l n+l

We demonstrate the algorithm by way of the following example.
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Example:

Data base:

Given are 4 error free vectors in the reference coordinate frame:

0.267 -0.667 0.267 -0.447
rl = | 0535 r2 = [-0.667 r3 = {-0.802 rd = | 0.894
0.802 -0.333 0.535 0.000

and a rotation from the reference to body axes described by the following Euler vector:

¢o'= [09, 02, 0.8)

The corresponding quaternion is:
q(l)T= [0.423, 0.094, 0.376, 0.819)

The four r vectors are transformed to the body frame and noise is added to the transformed vectors. The
noise elements added to each component of the transformed vectors is drawn from a random number
generator. The standard deviation of the noises are:

cl = 001 g2 = 0.05 o3 = 0.03 c4 = 0.02

The noise element added to each component of r, is drawn from the random number genefator whose
standard deviation is . i = 1, 2, 3, 4 The vectors are then normalized. The resulting simulated

measured vectors in body frame are then:

0.688 -0.985 -0.280 0.303
bl = | 0.662 b2 = |-0.120 b3 = |-0.030 b4 = | 0575
0.297 -0.123 0.959 -0.760
and the weights are chosen to be:
a =0 i=1,2734
1 1

Application of QUEST to the first two pairs:

Using, initially, at time ts the first two pairs of vectors, r1 and bl, and r2 and b2, we obtain Kl n
Its largest eigenvalue and the corresponding eigenvector, which, according to our notations, is q,,
are:

;'l/l = 1.0003551 q'fn = [0.427, 0.105, 0.383, 0.813]

The comesponding transformation matrix, A the correct matrix, A(1), and the difference (error)

1’
matrix, are:
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0.685 0.712 0.156 | 0.700 0.695 0.164
Al/l = |-0.532 0343 0.774 A(1) = |-0.536 0.361 0.763

0.497 -0.613 0.614 | 0471 -0.622 0.625
| -0.015 0.017 -0.007

Al/l - A(1) = | 0.004 -0.018 0.011

| 0.026 0.009 -0.012

The Euclidean norm of the error matrix is:

IAI/I - A(1)| = 0.044 (28)

This error stems, of course, from the measurement error contained in the b vectors.

Rotation of the body coordinate system:

We assume that after processing the first two pairs, which yielded Alll’ the body rotates for 1 sec at

the following angular rate:
@' = [0.1, 02, -0.3] rad/sec

The matrix @ which propagates the quaternion of this rotation (see (21)), and, AAthe attitude matrix
which expresses the change in the body coordinates are:

[ 0.983 -0.149 -0.099 0.050 ]
0.936 -0.283 -0.210
0.149 0.983 0.050 0.099
b= AA = | 0303 0951 0.068
0.099 -0.050 0.983 -0.149
0.181 -0.127 0.975

|-0.050 -0.099 0.149 0.983 |

Measurement update of K:

We use AA to transform b3 and b4 to the new time point, L. Using these b’s as the simulated
measurements at tz' we compute 8K2 according to (16), and update K, using (27), as follows:

Kin=®X, !
K, _= —ml— K+ L §K
2/2 n’l2 2/1 m 2 2
The largest eigenvalue and the corresponding eigenvccto;' (which is q,, 2) of K?_/2 are:
)'2I2 = 1.0001957 quz = [0.402, 0.253, 0.282, 0.834]
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The corresponding attitude matrix is:
0.713 0.673 -0.195

A2 n= -0.267 0.518 0.813

0.648 -0.528 0.549

Check:

We wish, now, to check this result. This is done as follows. We use AA to transform bl and b2 to the
new time point, X (Recall that b3 and b4 were already transformed in order to compute 8K2). Now we
apply the QUEST algorithm to all four pairs of r and b. The resulting quaternion should be CQlll%l to the
quaternion updated by the REQUEST algorithm. Indeed the two quaternions agree to at least 10° .

Remark:

When we compare, A(2) = AA-A(1), which is the correct matrix which transforms from the reference to
body axes at t2, to the attitude matrix A2/2, obtained by REQUEST (and, as we just checked, by QUEST as

well), we obtain:
0.005 -0.006 0.000

A2/2 - AQ2) = {-0.001 0.007 -0.005
-0.006 -0.001 0.007
The Euclidean norm of this error matrix is:
|A2',2 - A2)| = 0015
This error stems from the measurement noise in the b vectors and not from the algorithm. We note that

the latter error is smaller than lAl/l - A(1)| shown in (28). This is expected, since Azfz is computed

using four pairs of vectors whereas Al/l is computed using only two.

II1.2 Noisy Propagation

In the preceding developments we considered the presence of noise only in the measurements and assumed
that the angular rate vector, ®, was known to us perfectly. We wish to consider now errors also in our
knowledge of . Let us denote the measured, or computed, © by @ . We also assume that the error is

additive, thus we can write

© =0+E (29)
where € is the error component in the measured angular rate vector. We distinguish between two cases;
namely, short time application, and long time application of REQUEST. The two are treated next.
II1.2.1 Short Mission Duration

Since a typical update rate is once per second, typical gyro noise does not cause a considerable
attitude error during such a short period. In fact, even with an update rate of once per 10 seconds,
the attitude error amounts to a very small attitude emor. To illustrate this point, we tumn to the
example. Suppose that we use a triad of single axis gyros, each having a constant drift rate of 1°m,



which is about 100 times larger than that of inertial grade gyros. We use the first three measurements
to compute Kl/l and from it, Al/l' We then propagate Klll using <I>m, the gyro-error ridden transition

matrix, and obtain 1(2“'m and then compute the corresponding attitude matrix, A . In parallel we do

2/1,m

the same using @, the correct transition matrix, and obtain A the corresponding attitude matrix.

2/
Doing so, we discover that the largest difference betweﬁﬁn the magnitude of the elements of the two

attitude matrices, A2/1 n and A2/1’ is less than 5.23-1C °. Next, following the REQUEST algorithm, we

use the fourth measurement at time t2 to compute 8K2, update both, K2 N.m and K2/1’ and compute the

corresponding attitude matrix for the correct and erroneous propagatio%s. The largest error between the
elements of the, updated, two attitude matrices is less than 2.55.10°. We see two interesting facts.
First, indeed, the gyro error has little effect on the propagated K and, consequently, on the,
propagated and the updated, attitude matrices. Second, the incorporation of a new measurement reduces
the little error, caused by gyro drift, even further. As a consequence of this discussion, we conclude
that for a short mission duration the build up of attitude errors as a result of gyro drift is
negligible and the algorithm given in (27) is adequate.

IIL.2.2 Long Mission Duration

Space missions where QUEST is traditionally being used, are of long duration, therefore the initial
measurements are propagated through the repeated use of (27.a) to the current time. This in tum
reduces the accuracy of those measurements, and as time goes by they may corrupt the attitude rather
than improve it. Consequently, we wish to gradually reduce the influence of old measure ents, and
eventually eliminate them altogether. This is usually done using the Fading Memory = concept.
Accordingly, instead of using (27.b) for updating K, we may want to use the following algorithm
m 1
=p 6K (30.a)

K =p —K —_—
n+l/n+l nm n+l/n m n+l
n+l n+l

where 0 < P < 1. Note that P, has to be larger than O for (28.a) to yield a meaningful K when only
one measurement i§ performed at tn”. Also note that when no process noise is present, we set p= 1
which keeps the same relative yveighting‘of past and present measurements as in (27.b). Thg value gf P,
can be determined experimentally where a larger propagation noise is compenszied by a smaller P, value.
Note that p, can vary from step to step allowing the consideration of changing gyro noise. It should be
noted that the introduction of m in the REQUEST algorithm stems from our wish to maintain lmnz 1.

This is important if we use the classical QUEST method for solving for lmn [see ref. 7]. (If we use a

given eigenvalue-eigenvector solver routine, this is imrelevant). When (28.a) is used and we are still
interested in having Amu close to 1, we have to replace (28.a) by
_ pnmn
n+l/n+l p m + om
nn n+

1
Kn+l/n + p,m + 8mn+l 8Kn<|»l (30)

Note that, as before, this K update algorithm still assures proper weighing of the measurements; that
is, the measurement noise is properly considered.

1

IV. ALGORITHM SUMMARY
The REQUEST algorithm is summarized as follows.

1. Use the k measurements performed at the starting point, t,» tocompute Kl r First compute:
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k
m = 2=2a_ (31.a)

k i=li
1 k T
o=— XTabr (31.b)
m i=liii
k
1 k T
B=— Zabr, (3l.c)
m i=sliii
k
T
S=B+B (31.4d)
1 X
z= 51: i2=Ilai(bix ri) (3le)
Then compute:
S-ol| =z
K”l = i (31.6)
z [+
2. Form the angular rate matrix:
0 -® o
z y x
1 1| -0 0 o
i Q= 5 z X y (32)

e
&

[=]

©

where, @, i=1,2,3 are the components of the body axes, angular rate vector.

3. Compute &, the transition matrix from time t w0 time ty corresponding to this, generally
time-varying, angular rate matrix. (Algorithmslfor computing @ can be found in standard Control
Theory or State Estimation texts. See e.g. Gelb ) :

4. Propagate K1/1 according to:

T

K, = d Kmd> (33)
5. Compute SK2 as follows:
k+j
bm, = . .1 & (4.2)

(where k is the number of, already processed, pairs of vector measurements, and j is the number of
new measurement pairs performed at time tz).

k+j T

8, = . . 3P (34.6)
k+j T

3B, = . F. 3br, (34.0)

55, = 8B, + 513; (34.4)
k+j

8, = %, 3bxr) (34.¢)
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8S_ - 60 1 | bz
oK = |—2— 2 2 (34.9
2 527 do
2 2
then set P, in the range
0< P, <1 (34.)
and compute
U it B 5K (341)
2/2 p,m, + sz 21 " pm o+ sz 2
In preparation for the next time update, compute
m, =m + 8m2 (34.)

6. Only if there is an interest in extracting the attitude from K2/2’ compute the attitude at this time
point (tz), otherwise go to step 7.  The extraction of attitude from K ap A0 be done using the
algorithm given in QUEST, or any standard software package that can compute eigenvalues and

eigenvectors of a symmetric matrix (e.g. Matlab™ or Mathcadm). If the latter approach is chosen,
then, first, select the largest eigenvalue of K 22’ and, then, compute the corresponding

eigenvector.

7. Go to step 2 and increase the appropriate indices by 1, or stop if so desired.

V. CONCLUSIONS AND RECOMMENDATIONS

In this work we presented a recursive algorithm for attitude determination, from vector observations,
that was derived from QUEST. The new recursive algorithm, which we call REQUEST, is based on the
propagation and update of the K matrix, one of whose eigenvectors is the sought attitude quaternion.
Using REQUEST, we do not lose information gathered by measurements performed at previous time points,
and since we use prior information, even one measurement at a particular time point, to which K is
propagated, is sufficient for updating the attitude. We showed how to apply the algorithm to cases
where more than one measurement is taken at the new time point. We demonstrated that under normal
conditions, and for short mission durations, there is no need to treat propagation noise (also known as
process noise). For long mission durations we do have to consider the process noise. This is done using
the Fading-Memory notion whereby the weight of the contribution of old measurements to K is reduced
with time. We presented an example to illustrate the algorithm.

As mentioned, the new algorithm shows how the propagate and update K, but once K is computed, its
largest eigenvalue and the corresponding eigenvector, which is the sought quaternion, are found using
the method of QUEST. If, however, a standard eigenvalue-eigenvector solver algorithm, is used, then the
eigenvalue and eigenvector can be found directly without solving for Rodrigues parameters, and without
the need to be concerned about matrix singularity problems (see (9)).

As a follow up to this work, it is recommended that REQUEST be tested using real spacecraft data, and
be tested against other recursive algorithms, such as the extended Kalman filter.

Acknowledgement

We wish to thank F. Landis Markley for his helpful comments, particularly on the damping of past
measurements in long duration missions.

27



Appendix
In this appendix we prove that a cost function formulated as a quadratic form of a real symmetric
matrix, with a unity constraint on the vector part of this form, has the following two qualities:
I. Its maximum is equal to the value of the matrix largest eigenvalue.

II. The vector which maximizes the cost function is the matrix eigenvector which  corresponds to this
eigenvalue

We present the proof in a form of a question and an answer as follows.

Problem: Given
p=x Mx (Al where x| =1 (A2

and M is an nxn symmetric matrix, find x which maximizes W

Solution: We use the method of Lagrange multipliers to incorporate the constraint of (A.2) in the cost
function expressed in (A.1). Accordingly, we wish to maximize @(x) given by

00) = X' Mx + Al - x'x) (A3)
We denote the maximizing x by x*, then we can express x as follows
x =x* + ¢h (A4)
where € is a scalar. Substitution of the latter into (A.3) yields
8(€) = (x* + €b) M (x + eh) + ALl - (x* + €h) (x* + €h)] (A5)
An extremal point of ¢(g) satisfies the following
d¢(e) =
e |8=0 =0 for all h (A.6)

Now it can be easily verified that since M is symmetric,

‘Lgf_f—ﬂe:o = 2h"(Mx* - Ax¥) (A7)
Application of the condition for a stationary point of (A.6) to (A.7), yields
' (Mx* - Ax#) = 0 for all h (A8)
The latter condition can be met if and only if
Mx* = Ax* (A9)
Substitution of Mx#* given by the last equation into (A.1) yields
L= AxeTxe (A.10)

max
and since x* is of unit length, x*Tx'- = ], therefore (A.10) becomes

poo=2 (A.11)

max
and R takes its maximal value when A is ?.m“. which is the largest eigenvalue of
M. (Note that since M is symmetric, its eigenvalues are always real). Then
B =A (A.12)

max max

and x* is the eigenvector of M which corresponds to km“.
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